BAMBA Motoaki

Affiliation

Faculty of Engineering, Division of Intelligent Systems Engineering

Job Title

Associate Professor

Research Fields, Keywords

Quantum squeezing, Microcavities, Excitons, Quantum electrodynamics, Polaritons, Quantum optics, Superradiance, Condensed matter photophysics, Semiconductors, Phase transitions, Superconducting circuits, Quantum computing, Laser, Superradiant phase transition, Thermodynamics of electromagnetic fields, Electromagnetism, Nonlinear optics



ORCID  https://orcid.org/0000-0001-9811-0416

Education 【 display / non-display

  • 2004.4
    -
    2009.3

    Osaka University   Department of Materials Engineering Science   Doctor Course   Completed

  • 2000.4
    -
    2004.3

    Osaka University   Department of Electronics and Materials Physics   Graduated

Degree 【 display / non-display

  • Doctor of Sience - Osaka University

Campus Career 【 display / non-display

  • 2023.4
     
     

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Associate Professor  

  • 2023.4
     
     

    Concurrently   Yokohama National UniversityCollege of Engineering Science   Department of Mathematics, Physics, Electrical Engineering and Computer Science   Associate Professor  

  • 2023.4
     
     

    Concurrently   Yokohama National UniversityGraduate school of Engineering Science   Department of Mathematics, Physics, Electrical Engineering and Computer Science   Associate Professor  

External Career 【 display / non-display

  • 2021.1
     
     

    Kyoto University   Kyoto University Hakubi Researcher  

  • 2021.1
    -
    2023.3

    Kyoto University   Graduate School of Science   Collaborative Associate Professor  

  • 2021.1
    -
    2023.3

    Kyoto University   The Hakubi Center for Advanced Research   Program-Specific Associate Professor  

  • 2019.12
    -
    2023.3

    Kyoto University   International Research Unit of Quantum Information   Member  

  • 2019.4
    -
    2020.12

    Kyoto University   Graduate School of Science   Program-Specific Junior Associate Professor (JST PRESTO)  

display all >>

Academic Society Affiliations 【 display / non-display

Research Areas 【 display / non-display

  • Nanotechnology/Materials / Optical engineering and photon science

  • Natural Science / Semiconductors, optical properties of condensed matter and atomic physics

 

Books 【 display / non-display

  • Semiconductor quantum science and technology

    Nicolas Marquez Peraca, Andrey Baydin, Weilu Gao, Motoaki Bamba, Junichiro Kono( Role: Joint author ,  分担執筆, 範囲:Ultrastrong light–matter coupling in semiconductors)

    Elsevier  ( ISBN:9780128237731  [Reviewed]

    DOI CiNii

     More details

    Total pages:472   Responsible for pages:89-151   Language:English Book type:Scholarly book

  • Ultrastrong light–matter coupling in semiconductors

    Nicolas Marquez Peraca and Andrey Baydin and Weilu Gao and Motoaki Bamba and Junichiro Kono( Role: Joint author)

    Elsevier  ( ISBN:9780128237731

    DOI

     More details

    Language:English Book type:Scholarly book

  • 物性物理100問集

    問集出版プロジェクト 編, 木村剛, 小林研介, 田島節子( Role: Joint author ,  担当:共編者(共編著者))

    大阪大学出版会  ( ISBN:9784872595710

     More details

    Total pages:158   Language:Japanese Book type:Textbook, survey, introduction

Thesis for a degree 【 display / non-display

Papers 【 display / non-display

  • Quantum simulation of an extended Dicke model with a magnetic solid

    Nicolas Marquez Peraca, Xinwei Li, Jaime M. Moya, Kenji Hayashida, Dasom Kim, Xiaoxuan Ma, Kelly J. … Show more authors

    Communications Materials   5 ( 1 )   42   2024.3  [Reviewed]

    DOI Web of Science arXiv

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Nature   Joint Work  

    The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.

  • Perfect intrinsic squeezing at the superradiant phase transition critical point

    Kenji Hayashida and Takuma Makihara and Nicolas Marquez Peraca and Diego Fallas Padilla and Han Pu … Show more authors

    Scientific Reports   13 ( 1 )   2023.2  [Reviewed]

    DOI Web of Science PubMed

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}   Single Work  

    <jats:title>Abstract</jats:title><jats:p>Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.</jats:p>

  • Magnonic superradiant phase transition

    Bamba Motoaki, Li Xinwei, Peraca Nicolas Marquez, Kono Junichiro

    Communications Physics   5 ( 1 )   2022.1  [Reviewed]

    DOI Web of Science

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Joint Work  

  • Ultrastrong magnon-magnon coupling dominated by antiresonant interactions

    Makihara Takuma, Hayashida Kenji, Noe G. Timothy II, Li Xinwei, Peraca Nicolas Marquez, Ma Xiaoxuan … Show more authors

    NATURE COMMUNICATIONS   12 ( 1 )   2021.5  [Reviewed]

    DOI Web of Science PubMed arXiv

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:Springer Science and Business Media {LLC}   Joint Work  

    <jats:title>Abstract</jats:title><jats:p>Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.</jats:p>

    Other Link: http://dx.doi.org/10.1038/s41467-021-23159-z

  • Spacetime-localized response in quantum critical spin systems: Insights from holography

    Motoaki Bamba, Koji Hashimoto, Keiju Murata, Daichi Takeda, and Daisuke Yamamoto

    Physical Review D   109 ( 12 )   126003   2024.6  [Reviewed]

    DOI Web of Science

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Single Work  

display all >>

Review Papers 【 display / non-display

  • Thermal Photons and Non-Equilibrium Magnons

    Bamba Motoaki

    Butsuri   79 ( 2 )   63 - 67   2024.2  [Reviewed]  [Invited]

    DOI CiNii Research

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:The Physical Society of Japan   Single Work  

    <p>Magnon-mediated Dicke cooperativity has been observed in ErFeO<sub>3</sub>. A superradiant phase transition by ultrastrong magnon–spin coupling has also been confirmed. The low-temperature phase transition in ErFeO<sub>3</sub> would be a key phenomenon bridging the thermal-equilibrium and non-equilibrium physics.</p><p>Magnon-mediated Dicke cooperativity has been observed in ErFeO<sub>3</sub>. A superradiant phase transition by ultrastrong magnon–spin coupling has also been confirmed. The low-temperature phase transition in ErFeO<sub>3</sub> would be a key phenomenon bridging the thermal-equilibrium and non-equilibrium physics.</p>

  • 「博士のすゝめ」とその向こう側

    馬場基彰

    化学   78 ( 8 )   11 - 11   2023.8

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:岩波書店   Joint Work  

  • Our Voice and Our Ears-NPO for the Advancement of Science from Japan

    BAMBA Motoaki

    Butsuri   78 ( 3 )   152 - 153   2023.3  [Reviewed]  [Invited]

    DOI

     More details

    Authorship:Lead author, Last author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:The Physical Society of Japan   Single Work  

    Other Link: http://hdl.handle.net/2433/279807

  • Quantum Simulation of an Extended Dicke Model with a Magnetic Solid

    Nicolas Marquez Peraca, Xinwei Li, Jaime M. Moya, Kenji Hayashida, Xiaoxuan Ma, Kelly J. Neubauer, … Show more authors

    arXiv   2023.2

    DOI arXiv

     More details

    Authorship:Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:arXiv   Joint Work  

  • 日本科学振興協会の設立

    春日匠, 馬場基彰

    科学   92 ( 5 )   398 - 400   2022.5

     More details

    Authorship:Last author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (trade magazine, newspaper, online media)   Publisher:岩波書店   Joint Work  

display all >>

Awards 【 display / non-display

  • Top Peer Reviewer 2019, Top 1% of reviewers in Physics

    2019.9   Web of Science  

    Individual or group name of awards:Motoaki BAMBA

  • Publons Peer Review Awards 2018, Top 1% of reviewers in Physics

    2018.9   Web of Science  

    Individual or group name of awards:Motoaki BAMBA

  • Research Award

    2018.2   Research Foundation for Opto-Science and Technology  

    Individual or group name of awards:BAMBA Motoaki

  • 11th Young Scientist Award of the Physical Society of Japan (Division 5: Optical Properties of Condensed Matter)

    2017.3   The Physical Society of Japan   Superposition of light in free space and localized matters

    Individual or group name of awards:BAMBA Motoaki

  • 11th Young Scientist Award of the Physical Society of Japan (Division 1: Atomic and Molecular physics, Quantum Electronics, Radiation)

    2017.3   The Physical Society of Japan   Theoretical studies on the ultrastrong light matter coupling

    Individual or group name of awards:BAMBA Motoaki

display all >>

Grant-in-Aid for Scientific Research 【 display / non-display

Other external funds procured 【 display / non-display

  • Phase transition of environment for overcoming the trade-off between controlling and protecting quantum states

    Grant number:JPMJPR1767  2017.10 - 2021.3

    Japan Science and Technology Agency  Precursory Research for Embryonic Science and Technology (PRESTO)

    Investigator(s):BAMBA Motoaki

      More details

    Authorship:Principal investigator 

    In order to push the frontier of quantum technologies into the real societies, we try to establish a strategy for overcoming the trade-off between controlling and protecting quantum states. In contrast to the conventional way relying on the suppression of decoherence sources in fabrication processes, we artificially cause a phase transition of environment incorporating the decoherence sources, which are expected to be pinned by a spontaneously appeared field and an engineered energy gap in the environment, while keeping quantum-bits unchanged.

Presentations 【 display / non-display

display all >>

 

Charge of on-campus class subject 【 display / non-display

  • 2024   Current Topics in Physics Frontier

    Graduate school of Engineering Science

  • 2024   Solid State Physics

    College of Engineering Science

  • 2024   Solid State Physics 1

    College of Engineering Science

  • 2024   Mathematics for Physics

    College of Engineering Science

  • 2024   Advanced Theory of Light-Matter Interaction

    Graduate school of Engineering Science

Charge of off-campus class subject 【 display / non-display

  • 物性物理学入門

    2015.4 - 2019.9 Institution:大阪大学

 

Committee Memberships 【 display / non-display

  • National Institute of Science and Technology Policy (NISTEP)

    2023.4  Science and Technology Expert

     More details

    Committee type:Government 

  • Japanese Association for the Advancement of Science (JAAS)

    2021.11  Board member

     More details

    Committee type:Academic society 

  • Japanese Association for the Advancement of Science (JAAS)

    2021.11 - 2022.7  President

     More details

    Committee type:Academic society 

  • The Preparation Committee of Japanese Association for Advancement of Science

    2020.11 - 2022.6  Chairperson

     More details

    Committee type:Academic society 

  • The Physical Society of Japan

    2017.4 - 2018.3  Committee in Division 5

     More details

    Committee type:Academic society 

display all >>

Social Contribution(Extension lecture) 【 display / non-display

  • GENSEKI 2022 The Final

    Role(s): Commentator

    学生団体BEAST  GENSEKI 2022  日本科学未来館  2023.2

     More details

    Audience: Schoolchildren, Junior high school students, High school students, University students, Graduate students, Teachers, Parents/Guardians, Researchers, General public, Company

    Type:Seminar, workshop

  • 【京大准教授が語る】「光相転移」の魅力とは!?気になるヨーロッパの研究環境も紹介!(馬場基彰先生)- 第2回突撃隣の研究室!

    Role(s): Guest

    学生コミュニティミツバチ  突撃隣の研究室!  YouTube  2021.12

     More details

    Audience: Schoolchildren, Junior high school students, High school students, University students, Graduate students, Teachers, Parents/Guardians

    Type:Internet

  • CAREER ONLINE EVENT for Researchers and Candidates

    Role(s): Guest, Panelist

    BEAST  オンライン  2021.11

     More details

    Audience: University students, Graduate students, Teachers, Parents/Guardians, General public

    Type:Seminar, workshop

  • 集合知ネットワーク構築に向けて

    Role(s): Guest, Panelist

    科学技術振興機構(JST)  サイエンスアゴラ2021  2021.11

     More details

    Type:Seminar, workshop

    コロナ禍で様々な科学的な情報が政治判断に活用され、国民に対する説明においてもこういった科学的な根拠が広く使われてきた。しかし、残念ながら不足している部分が多くみられたことも否定できない事実であろう。では私たちは何を考え、何を誰とどのように議論を行えばよいのでしょうか。有事の際には毎回問題になるものの、猶予期間には手が付けられない。こういった壁をどのように乗り越えればよいのでしょうか。「ヒトが紡ぐ」様々な事象をどのようにとらえ、議論し、形にしていくことができるのでしょうか。
    いくつかの組織からゲストをお招きして、これらの解決策を講じ、知の在り方を探ります。

  • 集合知ネットワークの構築に向けて -効果的連携のあり方を探る-

    Role(s): Guest

    科学技術振興機構(JST)  サイエンスアゴラ2020  2020.11

     More details

    Type:Seminar, workshop

    ヒトが人であるがゆえに起こっている課題について解を見出すための一つの方法は「対話」ではないだろうか。 他者と経験を共にすることで自覚的価値が得られ、個人が知り得る情報範囲をつながることによって乗り越えられる。 21世紀型精神活動の現れとして本提案事業であるインクルーシブな学術的交流の機会の構築をめざし、様々な活動をされている方々にお集まりいただき、 効果的進め方を模索し、実装の足がかりとする。

Media Coverage 【 display / non-display

display all >>

Academic Activities 【 display / non-display

  • The International Workshop on Quantum Vacuum in Matter

    Role(s): Planning, management, etc.

    Hanyu Zhu  ( Rice University, Houston, TX, USA ) 2023.10

     More details

    Type:Academic society, research group, etc. 

    Rice University, Houston, TX, USA

  • 第31回光物性研究会

    Role(s): Planning, management, etc.

    光物性研究会  ( Zoom ) 2020.12

     More details

    Type:Academic society, research group, etc. 

  • 第23回光科学若手研究会

    Role(s): Planning, management, etc.

    光科学若手研究会  ( 大阪府立大学 I-site なんば ) 2019.11

     More details

    Type:Academic society, research group, etc. 

  • 応用物理学会 量子エレクトロニクス研究会「光操作の最前線」

    Role(s): Planning, management, etc.

    応用物理学会 量子エレクトロニクス研究会  ( 上智大学軽井沢セミナーハウス ) 2017.4

     More details

    Type:Academic society, research group, etc. 

  • 第16回光科学若手研究会

    Role(s): Planning, management, etc.

    光科学若手研究会  ( 立命館大学 大阪茨木キャンパス ) 2016.4

     More details

    Type:Academic society, research group, etc. 

display all >>