NAGURA Maki

Affiliation

Faculty of Engineering, Division of Intelligent Systems Engineering

Job Title

Research Fellow

Research Fields, Keywords

Algebraic Topology, Topology, Knot theory

Mail Address

E-mail address



The Best Research Achievement in Research Career 【 display / non-display

The Best Research Achievement in the last 5 years 【 display / non-display

Graduate School 【 display / non-display

  •  
    -
    1992.03

    Tsuda College  Graduate School, Division of Natural Science  Mathematics  Doctor Course  Accomplished credits for doctoral program

  •  
    -
    1989.03

    Ehime University  Graduate School, Division of Natural Science  Mathematics  Master Course  Completed

Degree 【 display / non-display

  • Master of Science - 

Campus Career 【 display / non-display

  • 2007.04
    -
    Now

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Research Fellow  

  • 2001.04
    -
    2007.03

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Research Associate  

  • 1997.10
    -
    2001.03

    Duty   Yokohama National UniversitySchool of Engineering   Research Associate  

  • 1992.04
    -
    1997.09

    Duty   Yokohama National UniversitySchool of Engineering   Academic Affairs Staff  

  • 2018.04
    -
    Now

    Concurrently   Yokohama National UniversityGraduate school of Engineering Science   Department of Mathematics, Physics, Electrical Engineering and Computer Science   Research Fellow  

display all >>

Academic Society Affiliations 【 display / non-display

  • 1993.03
     
     
     

    Japanese Mathematical Society

Field of expertise (Grants-in-aid for Scientific Research classification) 【 display / non-display

  • Geometry

 

Books 【 display / non-display

  • Topology

    Maki Nagura, Norio Konno (Part: Joint Work )

    Science-i  2018.03 ISBN: 9784797364446

    Amazon

  • The Mathematical Intelligencer

    R. Wilson, J. Gray, M. Ogawa, R. Kawabata, M. Nagura, M. Hirasawa, S. Matsumoto, Y. Marumoto, H. Murakami (Part: Joint Translation )

    Springer-Verlag Tokyo  2012.07 ISBN: 4431710191

    Amazon

  • The MATHEMATICS of OZ

    Clifford A. Pickover, Maki Nagura, Norio Konno (Part: Joint Translation )

    2009.06 ISBN: 4782805101

    Amazon

  • Transformation Groups in Algebra, Geometry and Calculus

    S. Duzhin, B. Chebotarevsky, S. Yukita, M. Nagura (Part: Single Translation )

    Springer-Verlag Tokyo  2000.12 ISBN: 443170907X

    Amazon

Papers 【 display / non-display

  • The first Pontrjagin classes of homotopy complex projective spaces

    YASUHIKO KITADA AND MAKI NAGURA

    オープンアクセス電子ジャーナル Arxiv ( Cornell University Library )    2016.12

    Joint Work

     View Summary

    Let M^{2n} be a closed smooth manifold homotopy equivalent to the complex projective space CP(n). The purpose of this paper is to show that when n is even, the difference of the first Pontrjagin classes between M^{2n} and CP(n) is divisible by 16.

    arXiv

  • Relations of smooth Kervaire classes over the mod 2 Steenrod algebra II

    Kitada, Yasuhiko; Nagura, Maki

    Yokohama Math. J. ( Yokohama National University )  59   15–31   2013  [Refereed]

    Joint Work

     View Summary

    In smooth surgery theory, it is worthwhile to find relations holding among universal characteristic classes of surgery, because those relations give us information on the possible values of surgery obstructions. We present and prove a new series of relations between smooth Kervaire classes.

  • Unknottiong Operations by Using Trivial Tangle Diagrams

    Maki Nagura

    Journal of Knot Theory and Its Ramifications   8 ( 7 )   901 - 929   1999  [Refereed]

    Single Work

  • The bracket polynomial by the Temperley-Lieb algebra

    Maki Nagura

    Tsuda Journal     211 - 218   1994  [Refereed]

    Single Work

Review Papers 【 display / non-display

  • MR3986049

    M. Nagura

    American Mathematical Society・Mathematical Reviews ( American Mathematical Society )    2020.02

    Introduction and explanation (scientific journal)   Single Work

     View Summary

    Review of the paper: Chlouveraki, Maria From the framisation of the Temperley-Lieb algebra to the James polynomial: an algebraic approach. Knots, low-dimensional topology and applications, 247--276, Springer Proc. Math. Stat., 284, Springer, Cham, 2019. 20C08 (05E10 16S80 57M25 57M27)

  • MR3932374

    M. Nagura

    American Mathematical Society・Mathematical Reviews ( American Mathematical Society )    2019.12

    Introduction and explanation (scientific journal)   Single Work

     View Summary

    Review of the paper: Kogiso, Takeyoshi; Wakui, Michihisa Kauffman bracket polynomials of Conway Coxeter friezes. Proceedings of the Meeting for Study of Number Theory, Hopf Algebras and Related Topics, 51--79, Yokohama Publ., Yokohama, 2019. 57M27 (13F60)

  • MR3934548

    M. Nagura

    American Mathematical Society・Mathematical Reviews ( American Mathematical Society )    2019.09

    Introduction and explanation (scientific journal)   Single Work

     View Summary

    Review of the paper: Medina, Carolina; Salazar, Gelasio When can a link be obtained from another using crossing exchanges and smoothings? Topology Appl. 260 (2019), 13--22. 57M25

  • MR3855479

    M. Nagura

    American Mathematical Society・Mathematical Reviews ( American Mathematical Society )    2019.04

    Introduction and explanation (scientific journal)   Single Work

     View Summary

    Review of the paper: Kim, Hyoungjun; Mattman, Thomas; Oh, Seungsang More intrinsically knotted graphs with 22 edges and the restoring method. J. Knot Theory Ramifications 27 (2018), no. 10, 1850059, 22 pp. 57M25 (05C10 57M27)

  • MR3845752

    M. Nagura

    American Mathematical Society・Mathematical Reviews ( American Mathematical Society )    2019.03

    Introduction and explanation (scientific journal)   Single Work

     View Summary

    Review of the paper: Parlier, Hugo; Pournin, Lionel Once punctured disks, non-convex polygons, and pointihedra. Ann. Comb. 22 (2018), no. 3, 619--640. 05C62 (05C10 32G15 57M15)

display all >>

Presentations 【 display / non-display

display all >>