所属組織 |
大学院環境情報研究院 社会環境と情報部門 |
職名 |
教授 |
研究キーワード |
グラフ理論、離散数学 |
ホームページ |
|
YNU研究拠点 |
|
関連SDGs |
小関 健太 (オゼキ ケンタ)
OZEKI Kenta
|
学内所属歴 【 表示 / 非表示 】
-
2024年4月-現在
専任 横浜国立大学 大学院環境情報研究院 社会環境と情報部門 教授
-
2019年4月-2024年3月
専任 横浜国立大学 大学院環境情報研究院 社会環境と情報部門 准教授
-
2017年2月-2019年3月
専任 横浜国立大学 大学院環境情報研究院 社会環境と情報部門 特任教員(准教授)
-
2024年4月-現在
併任 横浜国立大学 理工学部 数物・電子情報系学科 教授
-
2024年4月-現在
併任 横浜国立大学 大学院先進実践学環 教授
著書 【 表示 / 非表示 】
-
数学者の選ぶ「とっておきの数学」
藤沢 潤,前川 淳,他36名( 担当: 共著)
日本評論社 2023年9月
記述言語:日本語 著書種別:一般書・啓蒙書
-
中本 敦浩 , 小関 健太( 担当: 単著)
サイエンス社 2023年 ( ISBN:9784781915692 )
記述言語:日本語 著書種別:学術書
-
IT Text 離散数学
松原良太,大嶌彰昇,藤田慎也,小関健太,中上川友樹,佐久間雅,津垣正男( 担当: 共著 , 範囲: 4章 グラフと木)
オーム社 2010年10月
記述言語:日本語 著書種別:教科書・概説・概論
情報系を学ぶ学生にとっての基礎数学として、わかりやすい言葉と高校までに学んだ範囲で離散数学を基礎からていねいに解説した教科書。システム開発者や他分野の方にも基礎概念の整理に役立つ一冊。
学位論文 【 表示 / 非表示 】
-
Hamilton Cycles, Paths and Spanning Trees in a Graph
Kenta Ozeki
2009年3月
学位論文(博士) 単著
論文 【 表示 / 非表示 】
-
H-colorings for 4-regular graphs
Malnegro, AA; Ozeki, K
DISCRETE MATHEMATICS 347 ( 3 ) 2024年3月 [査読有り]
記述言語:英語 掲載種別:研究論文(学術雑誌) 共著
-
A Spanning Tree with at Most k Leaves in a K_{1,p}-Free Graph
Ozeki, K; Tsugaki, M
ELECTRONIC JOURNAL OF COMBINATORICS 30 ( 4 ) 2023年11月 [査読有り]
記述言語:英語 掲載種別:研究論文(学術雑誌) 共著
-
On strict-double-bound graphs and Cartesian products of paths and cycles
Egawa, Y; Ogawa, K; Ozeki, K; Tagusari, S; Tsuchiya, M
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS 2023年7月 [査読有り]
記述言語:英語 掲載種別:研究論文(学術雑誌) 共著
-
Note on fair game edge-connectivity of graphs
Furuya, M; Matsumoto, N; Ohno, Y; Ozeki, K
DISCRETE APPLIED MATHEMATICS 333 132 - 135 2023年7月 [査読有り]
記述言語:英語 掲載種別:研究論文(学術雑誌) 共著
-
A 2-Bisection with Small Number of Monochromatic Edges of a Claw-Free Cubic Graph
Eom Seungjae, Ozeki Kenta
GRAPHS AND COMBINATORICS 39 ( 1 ) 2023年2月 [査読有り]
記述言語:英語 掲載種別:研究論文(学術雑誌) 共著
総説・解説記事等 【 表示 / 非表示 】
-
エレガントな解答を求む 2024年4月号出題 2
小関 健太
数学セミナー 2024年4月 [依頼有り]
記述言語:日本語 掲載種別:記事・総説・解説・論説等(商業誌、新聞、ウェブメディア) 単著
-
エレガントな解答を求む 2023年5月号出題 1
小関 健太
数学セミナー 2023年5月 [依頼有り]
記述言語:日本語 掲載種別:記事・総説・解説・論説等(商業誌、新聞、ウェブメディア) 出版者・発行元:日本評論社 単著
-
エレガントな解答を求む 2022年4月号出題 2
小関 健太,松本直己
数学セミナー 2022年4月 [依頼有り]
記述言語:日本語 掲載種別:記事・総説・解説・論説等(商業誌、新聞、ウェブメディア) 出版者・発行元:日本評論社 共著
-
エレガントな解答を求む 2021年4月号出題 2
小関 健太
数学セミナー 2021年4月 [依頼有り]
記述言語:日本語 掲載種別:記事・総説・解説・論説等(商業誌、新聞、ウェブメディア) 出版者・発行元:日本評論社 単著
図1 はあるホテルの見取り図で,斜線部が部屋で白
い部分が廊下を表している.すべての廊下には電灯が
ついており,丸数字が表すスイッチにより隣接する廊
下の電灯のon–off を切り替えられる.ただし1 つの
スイッチは連動しており,例えば1 のスイッチを押す
と,図2 のように,1 と2 の間の廊下,1 と3 の間の
廊下,1 と4 の間の廊下の3 つの電灯のon–off が同時
に変わってしまう.(他の廊下の電灯のon–off は変わ
らない)
(1) 以下のどの状況のときに全部の廊下の電灯をoff に
できるでしょうか?
(A) 全部の電灯がon.
(B) 1 と2 の間の廊下と5 と6 の間の廊下だけ
電灯がoff,他はon,
(C) 1 と2 の間の廊下と4 と5 の間の廊下だけ
電灯がoff,他はon,
(2) 他の状態からはじめたときや別のホテルでも考え
てみてください.すべてをoff にできるための必
要十分条件を,すっきりした形で言えないでしょ
うか?
(1) のみの解答でも構いませんので,ぜひ考えてみて
ください. -
The color number of cubic graphs having a spanning tree with a bounded number of leaves
Malnegro, A.A. and Malacas, G.A. and Ozeki, K.
Theory and Applications of Graphs 8 ( 2 ) 2021年
記述言語:その他外国語 掲載種別:記事・総説・解説・論説等(大学・研究所紀要) 出版者・発行元:Georgia Southern University 共著
受賞 【 表示 / 非表示 】
-
2014年度 応用数学研究奨励賞
2015年03月 日本数学会 応用数学分科会 (g, f)-factors in directed graphs
受賞者:小関健太 -
日本数学会賞建部賢弘賞奨励賞
2013年03月 日本数学会
受賞者:小関健太
科研費(文科省・学振)獲得実績 【 表示 / 非表示 】
-
グラフの彩色手法の発展と高次元超多面体グラフの彩色
研究課題/領域番号:23K03195 2023年4月 - 2027年3月
科学研究費補助金 基盤研究(C)
代表者:小関 健太
資金種別:競争的資金
-
多面体的グラフにおける閉路の諸問題
研究課題/領域番号:22F22331 2022年11月 - 2025年3月
特別研究員奨励費
担当区分:その他 資金種別:競争的資金
-
情報科学応用のための分離行列圧縮技術の開発 研究課題
研究課題/領域番号:22K19773 2022年6月 - 2025年3月
挑戦的研究 (萌芽)
代表者:四方 順司
-
グラフの strong Gallai-Ramsey 理論の提案と発展
研究課題/領域番号:22F20324 2022年4月 - 2024年3月
特別研究員奨励費
担当区分:その他 資金種別:競争的資金
-
数学アプローチによる組合せ遷移の展開:活用事例を手がかりとして新解法へ
研究課題/領域番号:20H05795 2020年10月 - 2023年3月
学術変革領域研究(B)
担当区分:研究分担者
その他競争的資金獲得・外部資金受入状況 【 表示 / 非表示 】
-
グラフのハミルトン閉路に関する Nash-Williams と Grunbaum 予想の解決
2014年11月 - 2015年11月
公益財団法人 住 友 財 団 住友財団 基礎科学研究助成
代表者:小関 健太
グラフとは,頂点集合と辺集合(頂点集合の二元部分集合族)からなる構造として定義される.グラフの全ての頂点をちょうど一度ずつ通る閉路をハミルトン閉路と呼び,ちょうど一度ずつ通る道をハミルトン道と呼ぶ.「与えられたグラフがハミルトン閉路をもつかどうか決定する」という問題は,組み合わせ最適化の分野において特に重要な巡回セールスマン問題とも密接に関係しているため,グラフ理論の中でも非常に多くの研究がなされている.
ここで, グラフを平面グラフなどトポロジー的な閉曲面上のものに限ると,この問題は四色定理とも関わりを持つこともあり,多くの研究が行われている.本研究もこの流れに沿うものである.閉曲面上のグラフのハミルトン性については,表 1 にあるように 1956年の Tutte の結果以来様々な研究者が研究を行ってきた.例えば,1983年に Thomassen が「平面上の任意の 4-連結グラフはハミルトン連結である」と示したことを意味している.なお,グラフが,``任意の 2頂点に対し,それらを結ぶハミルトン道が存在する'' という性質を満たすとき,ハミルトン連結であるという.
このように,この分野についていくつかの結果が示されているが,未解決な部分も存在する.特に,次の命題は,40年以上未解決であり,グラフ理論全体の中でも重要なものとなっている.この予想の完全解決が研究の目的である.
予想 (Grunbaum `70, Nash-Williams `73)
トーラス上の任意の 4-連結グラフはハミルトン閉路を持つ.
研究発表 【 表示 / 非表示 】
-
Kempe equivalence classes on 3-edge-colorings in cubic graphs
Kenta Ozeki [招待有り]
2023 Joint Mathematics Meetings
開催年月日: 2023年1月
記述言語:英語 会議種別:口頭発表(招待・特別)
-
3-連結平面 3-正則グラフの Kempe 同値類の数
小関健太
第34回 位相幾何学的グラフ理論研究集会
開催年月日: 2022年11月
記述言語:日本語 会議種別:口頭発表(一般)
-
グラフの出次数制約のある向き付け
小関健太
第31回 位相幾何学的グラフ理論研究集会
開催年月日: 2019年11月
記述言語:英語 会議種別:口頭発表(一般)
-
An orientation of graphs with out-degree constraint
Kenta Ozeki [招待有り]
The 2nd East Asia Workshop on Extremal and Structural Graph Theory
開催年月日: 2019年11月
記述言語:英語 会議種別:口頭発表(招待・特別)
-
Spanning trees with few leaves in graphs on surfaces
Kenta Ozeki [招待有り]
International Conference on Graph Theory, Combinatorics and Applications
開催年月日: 2019年6月
記述言語:英語 会議種別:口頭発表(一般)
学会誌・論文誌編集等 【 表示 / 非表示 】
-
Journal of Algebra Combinatorics Discrete Structures and Applications
Editorial Board
2014年5月-現在 -
Theory and Applications of Graphs
Editorial Board
2014年1月-現在 -
Graphs and Combinatorics
Managing Editor
1985年1月-現在
担当授業科目(学内) 【 表示 / 非表示 】
-
2024年度 数理情報特論Ⅱ
大学院先進実践学環
-
2024年度 数理情報特論Ⅰ
大学院先進実践学環
-
2024年度 情報数学特論Ⅰ
大学院先進実践学環
-
2024年度 グラフアルゴリズム論演習
大学院環境情報学府
-
2024年度 グラフアルゴリズム論
大学院環境情報学府
学内活動 【 表示 / 非表示 】
-
2021年04月-現在数理科学EP 教職運営委員 (部局内委員会)
-
2020年04月-現在環境情報研究院 グローバル化演習運営委員 (部局内委員会)