KAJIWARA Takeshi

Affiliation

Faculty of Engineering, Division of Intelligent Systems Engineering

Job Title

Professor

Research Fields, Keywords

toric geometry, log geometry



Degree 【 display / non-display

  • Doctor of Mathematical Sciences -  The University of Tokyo

Campus Career 【 display / non-display

  • 2012.04
    -
    Now

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Professor  

  • 2007.04
    -
    2012.03

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Associate Professor  

  • 2006.04
    -
    2007.03

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Intelligent Systems Engineering   Associate Professor  

  • 2018.04
    -
    Now

    Concurrently   Yokohama National UniversityGraduate school of Engineering Science   Department of Mathematics, Physics, Electrical Engineering and Computer Science   Professor  

  • 2012.04
    -
    Now

    Concurrently   Yokohama National UniversityCollege of Engineering Science   Department of Mathematics, Physics, Electrical Engineering and Computer Science   Professor  

display all >>

Field of expertise (Grants-in-aid for Scientific Research classification) 【 display / non-display

  • Arithmetic Algebraic Geometry

 

Research Career 【 display / non-display

  • Study on Logarithmic Geometry

    Project Year:  -   

Thesis for a degree 【 display / non-display

  • Logarithmic compactifications of the generalized Jacobian variety

    梶原 健 

      1993.03

    Doctoral Thesis   Single Work

     View Summary

    東京大学大学院数理科学研究科数理科学専攻 Fontaine-Illusieの意味の対数構造の理論を用いて、特異点として高々通常2重点しかもたない連結完備被約曲線の一般ヤコビ多様体のコンパクト化を構成した。博士論文では修士論文で考察した、対数構造つき概型におけるマンフォードの構成を整理し完成させた。このコンパクト化の構成では、対数構造に伴う群を構造群にもつ主束の(一部の)モジュライ空間を用いる。したがって、これまで構成されていたコンパクト化が、捩れのない階数1の連接層をモジュライして構成するのに対して、ここでのコンパクト化はコホモロジー論的な解釈をもつ。この点はコンパクト化の幾何学を研究(例えば底変換の性質など)する際に重要な手法を与える。

Papers 【 display / non-display

  • Logarithmic abelian varieties Part IV: local moduli and GAGF

    Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama

    Yokohama Mathematical Journal   65   2020.03  [Refereed]

    Joint Work

  • Logarithmic abelian varieties, Part V: projective models

    Takeshi Kajiwara, Kazuya Kato, and Chikara Nakayama

    Yokohama Mathematical Journal ( Yokohama National University )  64   21 - 82   2019.03  [Refereed]

    Joint Work

  • A large orbit in a finite affine quandle

    Takeshi Kajiwara and Chikara Nakayama

    Yokohama Mathematical Journal   62   2016  [Refereed]

    Joint Work

  • Logarithmic abelian varieties, IV: proper models

    Takeshi Kajiwara, Kazuya Kato, Chikara Nakayama

    Nagoya Mathematical Journal   219   9 - 63   2015.06  [Refereed]

    Joint Work

    DOI

  • Logarithmic abelian varieties, III: logarithmic elliptic curves and modular curves

    Takeshi Kajiwara, Kazuya Kato, Chikara Nakayama

    Nagoya Mathematical Journal   210   59 - 81   2013.06  [Refereed]

    Joint Work

    Web of Science DOI

display all >>

Review Papers 【 display / non-display

  • Introcdction to the analysis of the infinite

    What's mathematics?-Introduction to modern mathematics     46 - 75   1997

    Introduction and explanation (others)   Joint Work

Grant-in-Aid for Scientific Research 【 display / non-display

  • Grant-in-Aid for Scientific Research(C)

    Project Year: 2015.04  -    Investigator(s): Takeshi Kajiwara