Affiliation |
Faculty of Engineering, Division of Materials Science and Chemical Engineering |
Job Title |
Professor |
Date of Birth |
1963 |
Research Fields, Keywords |
Industrial Electrolysis, Material, Electrolyte, Electrocatalyst, Fuel Cell |
Mail Address |
|
Related SDGs |
Education 【 display / non-display 】
-
-1989
Yokohama National University Department of Material Engineering Master Course Completed
-
-1987
Yokohama National University Department of Material Chemistry Graduated
Degree 【 display / non-display 】
-
Doctor in Engineering - Yokohama National University
Campus Career 【 display / non-display 】
-
2011.1
Duty Yokohama National UniversityFaculty of Engineering Division of Materials Science and Chemical Engineering Professor
-
2007.4-2010.12
Duty Yokohama National UniversityFaculty of Engineering Division of Materials Science and Chemical Engineering Associate Professor
-
2006.10-2007.3
Duty Yokohama National UniversityFaculty of Engineering Division of Materials Science and Chemical Engineering Associate Professor
-
2001.4-2006.9
Duty Yokohama National UniversityFaculty of Engineering Division of Materials Science and Chemical Engineering Research Assistant
-
2000.6-2001.3
Duty Yokohama National UniversitySchool of Engineering Research Assistant
External Career 【 display / non-display 】
-
2003.8-2004.7
Ecole Polytechnique de Montreal Invited Researcher
-
1994.9-2000.5
Hitachi Research Laboratory, Hitachi Ltd Researcher
-
1989.4-1994.9
Hitachi Research Laboratory, Hitachi Ltd
Academic Society Affiliations 【 display / non-display 】
-
2000.10
The Hydrogen Energy System Society of Japan
-
1996.3
The Electrochemical Society
-
1987.1
The Electrochemical Society of Japan
Research Areas 【 display / non-display 】
-
Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Electron device and electronic equipment
-
Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Chemical reaction and process system engineering
-
Nanotechnology/Materials / Inorganic materials and properties
-
Nanotechnology/Materials / Inorganic compounds and inorganic materials chemistry
Research Career 【 display / non-display 】
-
有機ハイドライド電解合成
The Other Research Programs
Project Year: 2013.4
-
アルカリ水電解用アノード
The Other Research Programs
Project Year: 2011.4
-
New Material for Molten Carbonate Fuel Cells
New Sunshine Program New Sunshine Project
Project Year:
-
Design of the Pseudo-3D Interface for Electrochemical Energy Conversion
JST Basic Research Programs (Core Research for Evolutional Science and Technology :CREST)
Project Year:
-
Material and Electrochemical Reaction for Mesothermal Fuel Cells
New Sunshine Program New Sunshine Project
Project Year:
Books 【 display / non-display 】
-
Processes for Production and Utilization of Organic Hydride and Ammonia
Shigenori Mitsushima, Kensaku Nagasawa( Role: Sole author)
( ISBN:978-4-7813-1600-0 )
Total pages:344 Responsible for pages:27-35 Language:Japanese Book type:Scholarly book
-
Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries
Yoshiyuki Kuroda, Shigenori Mitsushima( Role: Joint author , 4 - Oxygen evolution reaction (OER) at nanostructured metal oxide electrocatalysts in water electrolyzers)
Elsevier ( ISBN:978-0-12-818496-7 )
Total pages:268 Responsible for pages:61-82 Language:English Book type:Scholarly book
-
水素エネルギーの事典
光島重徳 外( Role: Contributor)
水素エネルギー協会 編 ( ISBN:978-4-254-14106-1 )
Total pages:240 Language:Japanese Book type:Scholarly book
-
Fuel Cells and Hydrogen
Viktor Hacker, Shigenori Mitsushima( Role: Joint author)
From Fundamentals to Applied Research
Total pages:296 Language:English Book type:Scholarly book
-
リスク共生学
( Role: Contributor)
丸善出版
Language:Japanese Book type:Scholarly book
Thesis for a degree 【 display / non-display 】
-
Fundamental study for the improvement of molten carbonate fuel cells
Shigenori Mitsushima
1998.12
Doctoral Thesis Single Work
-
溶融炭酸塩中における材料の劣化に関する研究
光島重徳
1989.3
Master Thesis Single Work
横浜国立大学工学研究科
溶融炭酸塩形燃料電池用のカソード材料の安定性向上を目的とし、代表的なカソード材料である酸化ニッケルの溶解度の溶融炭酸塩の組成や温度に対する依存性ならびに代替材料であるニッケルフェライトの溶解度を測定し、その溶解メカニズムを明らかにした。
Papers 【 display / non-display 】
-
Kuroda, Y; Mizukoshi, D; Yadav, V; Taniguchi, T; Sasaki, Y; Nishiki, Y; Awaludin, Z; Kato, A; Mitsu … Show more authors
Kuroda, Y; Mizukoshi, D; Yadav, V; Taniguchi, T; Sasaki, Y; Nishiki, Y; Awaludin, Z; Kato, A; Mitsushima, S Hide authors
ADVANCED ENERGY AND SUSTAINABILITY RESEARCH 2024.10 [Reviewed]
Language:English Publishing type:Research paper (scientific journal) Joint Work
-
Atienza-Márquez, A; Oi, S; Araki, T; Mitsushima, S
ENERGY 304 2024.9 [Reviewed]
Authorship:Last author Language:English Publishing type:Research paper (scientific journal) Joint Work
-
Direct Toluene Electro-hydrogenation Using Anion Exchange Membrane Electrolyzer
SHINOHARA Rio, NAGASAWA Kensaku, KURODA Yoshiyuki, IKEGAMI Kaoru, MITSUSHIMA Shigenori
Electrochemistry 92 ( 9 ) 097003 - 097003 2024.9 [Reviewed]
Authorship:Last author, Corresponding author Language:English Publishing type:Research paper (scientific journal) Publisher:公益社団法人 電気化学会 Joint Work
<p>Direct toluene electro-hydrogenation is gaining considerable attention for storing and transporting large amounts of energy. When a proton exchange membrane (PEM) is used in this system, dragged water molecules migrate with the protons from the anode to the cathode, and water inhibits the toluene hydrogenation reaction at the cathode. An anion exchange membrane (AEM) is expected to facilitate the migration of water from the cathode to the anode, and less water suppresses the side reactions. In this study, the quantity of water reaching the cathode is determined. Further, direct toluene electro-hydrogenation without side reactions except hydrogen generation is successfully performed using the AEM. Moreover, optimization of the catalyst loading results in an improved current efficiency exceeding 1.5 mg cm<sup>−2</sup>. This technology is valuable as a first step in direct toluene electro-hydrogenation using AEM.</p>
-
Fernando Rocha, Christos Georgiadis, Kevin Van Droogenbroek, Renaud Delmelle, Xavier Pinon, Grzegor … Show more authors
Fernando Rocha, Christos Georgiadis, Kevin Van Droogenbroek, Renaud Delmelle, Xavier Pinon, Grzegorz Pyka, Greet Kerckhofs, Franz Egert, Fatemeh Razmjooei, Syed-Asif Ansar, Shigenori Mitsushima, Joris Proost Hide authors
Nature Communications 15 7444 2024.8 [Reviewed]
Language:English Publishing type:Research paper (scientific journal) Single Work
Other Link: https://www.nature.com/articles/s41467-024-51704-z
-
Nara, Y; Tomita, M; Nagasawa, K; Kuroda, Y; Mitsushima, S; Kawakami, H; Tanaka, M
ADVANCED ENGINEERING MATERIALS 2024.8 [Reviewed]
Language:English Publishing type:Research paper (scientific journal) Joint Work
Review Papers 【 display / non-display 】
-
Electrolyzer Technologies in Toluene Direct Electro-hydrogenation for Methylcyclohexane Synthesis
NAGASAWA Kensaku, MITSUSHIMA Shigenori
Journal of the Japan Petroleum Institute 67 ( 3 ) 97 - 104 2024.5
DOI Web of Science CiNii Research
Language:Japanese Publishing type:Article, review, commentary, editorial, etc. (scientific journal) Publisher:The Japan Petroleum Institute Joint Work
<p>This review presents an overview of the development of an electrolyzer for the direct electrohydrogenation of toluene, a one-step electrochemical process for directly synthesizing methylcyclohexane from toluene and water utilizing solid polymer electrolyte (SPE) membranes. Reducing the cell voltage and enhancing the current efficiency are important to improve the performance of a toluene direct electrohydrogenation electrolyzer. To improve these characteristics, the electrolyzer components consisting of the flow field, the diffusion layer, the anode mesh size, and the collector and cathode catalyst layer were modified and optimized. Investigation of the flow field structure found that the porous carbon flow field exhibited the highest performance, with remarkable improvement in current efficiency. Decrease in current efficiency indicates hydrogen gas generation at the cathode. However, loading of the Pt catalyst in the porous carbon flow field on the cathode side resulted in chemical reaction of the hydrogen gas generated in the catalyst layer with toluene utilizing the Pt catalyst, which significantly improved the overall current efficiency. Smaller mesh size of the anode and heat-pressing treatment of the anode current collector reduced the cell voltage with increased cathode catalyst utilization ratio by improvement of surface pressure uniformity and membrane flatness. The toluene permeation properties of various SPE membranes were determined and the relationship between the catalyst layer thickness and electrolysis performance was clarified. The developed technologies improved the cell voltage at 0.4 A cm<sup>−2</sup> current density from 2.10 to 1.72 V and achieved more than 90 % toluene conversion in continuous single-flow operation.</p><p>This review presents an overview of the development of an electrolyzer for the direct electrohydrogenation of toluene, a one-step electrochemical process for directly synthesizing methylcyclohexane from toluene and water utilizing solid polymer electrolyte (SPE) membranes. Reducing the cell voltage and enhancing the current efficiency are important to improve the performance of a toluene direct electrohydrogenation electrolyzer. To improve these characteristics, the electrolyzer components consisting of the flow field, the diffusion layer, the anode mesh size, and the collector and cathode catalyst layer were modified and optimized. Investigation of the flow field structure found that the porous carbon flow field exhibited the highest performance, with remarkable improvement in current efficiency. Decrease in current efficiency indicates hydrogen gas generation at the cathode. However, loading of the Pt catalyst in the porous carbon flow field on the cathode side resulted in chemical reaction of the hydrogen gas generated in the catalyst layer with toluene utilizing the Pt catalyst, which significantly improved the overall current efficiency. Smaller mesh size of the anode and heat-pressing treatment of the anode current collector reduced the cell voltage with increased cathode catalyst utilization ratio by improvement of surface pressure uniformity and membrane flatness. The toluene permeation properties of various SPE membranes were determined and the relationship between the catalyst layer thickness and electrolysis performance was clarified. The developed technologies improved the cell voltage at 0.4 A cm<sup>−2</sup> current density from 2.10 to 1.72 V and achieved more than 90 % toluene conversion in continuous single-flow operation.</p>
-
Water Electrolysis as Hydrogen Production Technology from Renewable Electricity
MITSUSHIMA Shigenori
Nihon Enerugii Gakkai Kikanshi Enermix 101 ( 6 ) 713 - 719 2022.11
Language:Japanese Publishing type:Article, review, commentary, editorial, etc. (scientific journal) Publisher:The Japan Institute of Energy Single Work
-
Electrochemical Methods for Water Electrolysis Electrodes and Electrocatalysts
MITSUSHIMA Shigenori, IOROI Tsutomu, KURODA Yoshiyuki, NAGASAWA Kensaku, UCHIYAMA Tomoki, ORIKASA Y … Show more authors
MITSUSHIMA Shigenori, IOROI Tsutomu, KURODA Yoshiyuki, NAGASAWA Kensaku, UCHIYAMA Tomoki, ORIKASA Yuki, INOUE Hiroshi, HIGUCHI Eiji, ANDO Kota, NAKAJIMA Takashi, MISUMI Ryuta, UCHIMOTO Yoshiharu Hide authors
Denki Kagaku 90 ( 2 ) 136 - 158 2022.6
Authorship:Lead author, Corresponding author Language:Japanese Publishing type:Article, review, commentary, editorial, etc. (scientific journal) Publisher:The Electrochemical Society of Japan Joint Work
<p></p><p></p>
-
Water Electrolysis Technology Toward Green Hydrogen Production
Shigenori Mitsushima, Yoshiyuki Kuroda
The Journal of Fuel Cell Technology 20 ( 4 ) 7 - 13 2021.4
Authorship:Lead author, Corresponding author Language:English Publishing type:Article, review, commentary, editorial, etc. (scientific journal) Single Work
-
水電解による水素製造の現状と展望
光島 重徳、藤田 礁
電気化学および工業物理化学 85 ( 1 ) 28 - 33 2016.12
Language:Japanese Publishing type:Article, review, commentary, editorial, etc. (bulletin of university, research institution) Publisher:電気化学会 Joint Work
Industrial Property Rights 【 display / non-display 】
-
3次元規則骨格を有する電極、水電解装置、燃料電池
加藤 純、光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一
Applicant:横浜国立大学、三菱マテリアル
Application no:2022-140190 Date applied:2022.9.2
Announcement no:2024-035612 Date announced:2024.3.14
-
3次元規則骨格を有する電極、水電解装置、燃料電池
加藤 純、光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一
Applicant:横浜国立大学、三菱マテリアル
Application no:2022-140184 Date applied:2022.9.2
Announcement no:2024-035606 Date announced:2024.3.14
-
3次元規則骨格構造を有する金属部材、水電解装置、燃料電池
光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一、加藤 純
Applicant:横浜国立大学、三菱マテリアル
Application no:2022-139722 Date applied:2022.9.2
Announcement no:2024-035330 Date announced:2024.3.14
-
カソード、膜電極接合体及び有機ハイドライド製造装置
光島 重徳、長澤 兼作、黒田 義之
Applicant:国立大学法人横浜国立大学
Application no:2022-032798 Date applied:2022.3.3
Announcement no:2023-128449 Date announced:2023.9.14
Country of applicant:Domestic
-
カソード、膜電極接合体及び有機ハイドライド製造装置
光島 重徳、長澤 兼作、黒田 義之
Applicant:横浜国立大学
Application no:2022-032798 Date applied:2022.3.3
Announcement no:2023-128449 Date announced:2023.9.14
Awards 【 display / non-display 】
-
2024.7 公益社団法人発明協会 耐久性の高い水素キャリアとしての有機ハイドライド製造装置及び製造方法の発明 (特許第6758628号)
Individual or group name of awards: 光島重徳(横浜国立大学)、 長澤兼作(産業技術総合研究所)、 錦善則(デノラ・ペルメレック(株))、加藤昭博(デノラ・ペルメレック(株))、尾形節郎(デノラ・ペルメレック(株))、Zaenal Awaludin(デノラ・ペルメレック(株))、眞鍋明義(デノラ・ペルメレック(株))、佐藤 康司(ENEOS(株))、松岡孝司(ENEOS(株))
-
Electrochemistry誌の2023年の被引用上位論文「第2位」
2024.7 Electrochemistry
Individual or group name of awards:Ashraf ABDEL HALEEM, 長澤 兼作, 黒田 義之, 錦 善則, Awaludin ZAENAL, 光島 重徳
-
平成31年度電気化学会論文賞
2019.3 電気化学会 Dependence of the Reverse Current on the Surface of Electrode Placed on a Bipolar Plate in an Alkaline Water Electrolyzer
Individual or group name of awards:内野 陽介、小林 貴之、長谷 川 伸司、永島 郁男、砂田 良 雄、真鍋 明義、錦 善則、光島 重徳
-
平成26年度業績賞
2014.11 電気化学会電解科学技術委員会
Individual or group name of awards:光島重徳
Other external funds procured 【 display / non-display 】
-
常温水電解の実用化基盤研究プラットフォームの構築
2023.6 - 2025.3
NEDO燃料電池等利用の飛躍的拡大に向けた共通課題解決型産学官連携研究開発事業
Authorship:Principal investigator
-
トルエン直接電解水素化電解槽の水挙動の解析と電流効率の向上
2021.6 - 2023.3
水素利用等先導研究開発事業/エネルギーキャリアシステム調査・研究
-
アルカリ水電解及び固体高分子形水電解の高度化
2018.7 - 2023.3
水素利用等先導研究開発事業/水電解水素製造技術高度化のための基盤技術研究開発
-
有機ハイドライド電解合成用電極触媒の研究開発
2017.5 - 2018.2
エネルギー・環境新技術先導プログラム
Investigator(s):光島重徳
-
<エネルギーキャリア・チーム>有機ハイドライド
2013.7 - 2014.6
Japan Science and Technology Agency 戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA) 特別重点技術領域
Investigator(s):光島重徳
Presentations 【 display / non-display 】
-
Quantitative Evaluation of the Activity of Nickel Ion Site of LiNi0.5Mn1.5O4 Spinel for Oxygen Evolution Reaction
H. Zhao, T. Uchiyama, Y. Orikasa, T. Watanabe, K. Yamamoto, T. Matsunaga, Y. Nishiki, S. Mitsushima, and Y. Uchimoto
242nd ECS meeting The Electrochemical Society
Event date: 2022.10
Language:English Presentation type:Oral presentation (general)
Venue:Atolanta
-
トルエン直接電解水素化の電流効率低下の解析
朝野公太、池上芳、黒田義之、光島重徳
電気化学会第91回大会 公益社団法人電気化学会
Event date: 2024.3
Language:Japanese Presentation type:Oral presentation (general)
Venue:名古屋大学 東山キャンパス
-
アルカリ水電解用多孔質隔膜における水素透過度の温度および電解質濃度依存性
川端 昴、Hassan Ashraf、光島 重徳、黒田 義之
電気化学会第91回大会 公益社団法人電気化学会
Event date: 2024.3
Language:Japanese Presentation type:Oral presentation (general)
Venue:名古屋大学 東山キャンパス
-
アルカリ水電解用の多孔質電極の特性解析
岡島 光作、黒田 義之、武田 康誠、沼田 昂真、奥野 一樹、光島 重徳
第43回水素エネルギー協会大会 2023.12 水素エネルギー協会
Event date: 2023.12
Language:Japanese Presentation type:Oral presentation (general)
Venue:東京 Country:Japan
-
ガス発生反応用粉末電極触媒の活性評価に向けた気泡の影響除去の検討
竹永優、李坤朋、黒田義之、光島重徳
第47回電解技術討論会 -ソーダ工業技術討論会- 電解科学技術委員会
Event date: 2023.11
Language:Japanese Presentation type:Oral presentation (general)
Venue:大阪公立大学 なんばi-siteキャンパス
Charge of on-campus class subject 【 display / non-display 】
-
2024 Exercise in Advanced Energy Creation F
Graduate school of Engineering Science
-
2024 Exercise in Advanced Energy Creation S
Graduate school of Engineering Science
-
2024 Advanced Energy Chemistry
Graduate school of Engineering Science
-
2024 Exercise in Technology for Energy Creation F
Graduate school of Engineering Science
-
2024 Exercise in Technology for Energy Creation S
Graduate school of Engineering Science
Committee Memberships 【 display / non-display 】
-
水素エネルギー協会
2022.5 - 2024.5 会長
Committee type:Academic society
-
電気化学会
2019.4 - 2021.3 理事・会計理事
Committee type:Academic society
H31-32年度電気化学会理事・会計理事
-
水素エネルギー協会
2018.4 - 2022.3 業務執行副会長
Committee type:Academic society
-
Electrocatalysis
2018.1 Topical Editor
Committee type:Academic society
-
埼玉県 水素エネルギー普及推進協議会
2017.12 会長
Committee type:Other
Social Contribution(Extension lecture) 【 display / non-display 】
-
光島重徳「市内CO2排出削減が日本全体に役に立つ」 川崎区で「水素戦略」シンポジウム
Role(s): Guest, Lecturer, Logistic support
川崎臨海部水素ネットワーク協議会 「水素戦略」シンポジウムを開催後(川崎区 2020年2月19日)東京新聞に掲載(2020年2月20日) 2020.2
Audience: University students, Graduate students, Teachers, Researchers, Company, Government agency, Media, Other
Type:Lecture
-
エネルギー・環境問題と水素・燃料電池技術の現状
工学研究院 横浜国立大学 2007.6
Type:Extension Lecture
エネルギー・環境問題を克服し、持続成長可能な社会を築くためには地球規模の視点での問題提起とナノレベルの技術開発が欠かせません。本講座では、来るべき水素社会の本質と新エネルギーの開発、燃料電池の現状技術