MITSUSHIMA Shigenori

Affiliation

Faculty of Engineering, Division of Materials Science and Chemical Engineering

Job Title

Professor

Date of Birth

1963

Research Fields, Keywords

Fuel Cell, Industrial Electrolysis, Material, Electrolyte, Electrocatalyst

Mail Address

E-mail address

Related SDGs




写真a

Education 【 display / non-display

  •  
    -
    1989

    Yokohama National University   Department of Material Engineering   Master Course   Completed

  •  
    -
    1987

    Yokohama National University   Department of Material Chemistry   Graduated

Degree 【 display / non-display

  • Doctor in Engineering - Yokohama National University

Campus Career 【 display / non-display

  • 2011.1
     
     

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Materials Science and Chemical Engineering   Professor  

  • 2007.4
    -
    2010.12

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Materials Science and Chemical Engineering   Associate Professor  

  • 2006.10
    -
    2007.3

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Materials Science and Chemical Engineering   Associate Professor  

  • 2001.4
    -
    2006.9

    Duty   Yokohama National UniversityFaculty of Engineering   Division of Materials Science and Chemical Engineering   Research Assistant  

  • 2000.6
    -
    2001.3

    Duty   Yokohama National UniversitySchool of Engineering   Research Assistant  

display all >>

External Career 【 display / non-display

  • 2003.8
    -
    2004.7

    Ecole Polytechnique de Montreal   Invited Researcher  

  • 1994.9
    -
    2000.5

    Hitachi Research Laboratory, Hitachi Ltd   Researcher  

  • 1989.4
    -
    1994.9

    Hitachi Research Laboratory, Hitachi Ltd  

Academic Society Affiliations 【 display / non-display

  • 2000.10
     
     
     

    The Hydrogen Energy System Society of Japan

  • 1996.3
     
     
     

    The Electrochemical Society

  • 1987.1
     
     
     

    The Electrochemical Society of Japan

Research Areas 【 display / non-display

  • Nanotechnology/Materials / Inorganic materials and properties

  • Nanotechnology/Materials / Inorganic compounds and inorganic materials chemistry

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Chemical reaction and process system engineering

  • Manufacturing Technology (Mechanical Engineering, Electrical and Electronic Engineering, Chemical Engineering) / Electron device and electronic equipment

 

Research Career 【 display / non-display

  • 有機ハイドライド電解合成

    The Other Research Programs  

    Project Year: 2013.4

  • アルカリ水電解用アノード

    The Other Research Programs  

    Project Year: 2011.4

  • New Material for Molten Carbonate Fuel Cells

    New Sunshine Program New Sunshine Project  

    Project Year:

  • Design of the Pseudo-3D Interface for Electrochemical Energy Conversion

    JST Basic Research Programs (Core Research for Evolutional Science and Technology :CREST)  

    Project Year:

  • Material and Electrochemical Reaction for Mesothermal Fuel Cells

    New Sunshine Program New Sunshine Project  

    Project Year:

display all >>

Books 【 display / non-display

  • Processes for Production and Utilization of Organic Hydride and Ammonia

    Shigenori Mitsushima, Kensaku Nagasawa( Role: Sole author)

    ( ISBN:978-4-7813-1600-0

     More details

    Total pages:344   Responsible for pages:27-35   Language:Japanese Book type:Scholarly book

  • Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-air Batteries

    Yoshiyuki Kuroda, Shigenori Mitsushima( Role: Joint author ,  4 - Oxygen evolution reaction (OER) at nanostructured metal oxide electrocatalysts in water electrolyzers)

    Elsevier  ( ISBN:978-0-12-818496-7

     More details

    Total pages:268   Responsible for pages:61-82   Language:English Book type:Scholarly book

  • 水素エネルギーの事典

    光島重徳 外( Role: Contributor)

    水素エネルギー協会 編  ( ISBN:978-4-254-14106-1

     More details

    Total pages:240   Language:Japanese Book type:Scholarly book

  • Fuel Cells and Hydrogen

    Viktor Hacker, Shigenori Mitsushima( Role: Joint author)

    From Fundamentals to Applied Research 

     More details

    Total pages:296   Language:English Book type:Scholarly book

  • リスク共生学

    ( Role: Contributor)

    丸善出版 

     More details

    Language:Japanese Book type:Scholarly book

display all >>

Thesis for a degree 【 display / non-display

  • Fundamental study for the improvement of molten carbonate fuel cells

    Shigenori Mitsushima

    1998.12

    Doctoral Thesis   Single Work  

  • 溶融炭酸塩中における材料の劣化に関する研究

    光島重徳

    1989.3

    Master Thesis   Single Work  

     More details

    横浜国立大学工学研究科
    溶融炭酸塩形燃料電池用のカソード材料の安定性向上を目的とし、代表的なカソード材料である酸化ニッケルの溶解度の溶融炭酸塩の組成や温度に対する依存性ならびに代替材料であるニッケルフェライトの溶解度を測定し、その溶解メカニズムを明らかにした。

Papers 【 display / non-display

  • Operando observation of bubble formation and mass transfer overpotential in alkaline water electrolysis

    MISUMI Ryuta, KURODA Yoshiyuki, ARAKI Takuto, MITSUSHIMA

    JAPANESE JOURNAL OF MULTIPHASE FLOW   39 ( 1 )   18 - 25   2025.3  [Reviewed]

    DOI CiNii Research

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)   Publisher:THE JAPANESE SOCIETY FOR MULTIPHASE FLOW   Joint Work  

  • Hydrogen bubble transport of a direct toluene electro-hydrogenation electrolyzer visualized by synchrotron X-ray CT

    Reyna-Peña, FI; Atienza-Márquez, A; Jang, S; Shigemasa, K; Shiono, R; Nagasawa, K; Araki, T; Mitsus … Show more authors

    RENEWABLE ENERGY   240   2025.2  [Reviewed]

    DOI Web of Science

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Joint Work  

  • Numerical modeling of two-phase flow considering multiple bubble sizes in an alkaline water electrolyzer

    Kanemoto, R; Araki, T; Misumi, R; Mitsushima, S

    CHEMICAL ENGINEERING SCIENCE   304   2025.2  [Reviewed]

    DOI Web of Science

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Joint Work  

  • Faster R-CNN-based Detection and Tracking of Hydrogen and Oxygen Bubbles in Alkaline Water Electrolysis

    Toyama, K; Kanemoto, R; Misumi, R; Araki, T; Mitsushima, S

    ELECTROCHEMISTRY   93 ( 2 )   027011 - 027011   2025  [Reviewed]

    DOI Web of Science CiNii Research

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:公益社団法人 電気化学会   Joint Work  

    <p>In this study, a method for detecting and tracking hydrogen and oxygen bubbles during alkaline water electrolysis was developed using Faster R-CNN and DeepSORT. The images required for CNN training were automatically generated by a pseudo-bubble image generation algorithm specifically developed for the purpose of this study. The method was applied to the results of observations on alkaline water electrolysis obtained under various current densities and wire electrode diameters. Evaluation of detection performance using a confusion matrix showed that for the hydrogen evolution reaction (HER) at a current density of 1.0 A cm<sup>−2</sup> and a wire electrode diameter of 200 µm, the method achieved a precision of 1.00, recall of 0.840, and <i>F</i><sub>1</sub> score of 0.940, indicating very high detection performance. For the oxygen evolution reaction (OER), bubbles were detected almost perfectly under all conditions, with all detection metrics exceeding 1.00. The proposed method was approximately 20000 times faster than humans. Bubble diameter distribution, total volume, total number, and Sauter mean diameter were obtained and quantitatively assessed, and the relationships between current density and electrode diameter for both HER and OER have been discussed. This method enables accurate, rapid, and automatic quantitative evaluation of visualization results from various alkaline water electrolysis observations, which were previously difficult and labor-intensive to perform manually.</p>

  • Integration of Multifunctionality in a Colloidal Self-Repairing Catalyst for Alkaline Water Electrolysis to Achieve High Activity and Durability

    Kuroda Yoshiyuki, Mizukoshi Daiji, Yadav Vinay, Taniguchi Tatsuya, Sasaki Yuta, Nishiki Yoshinori, … Show more authors

    Advanced Energy and Sustainability Research   5 ( 11 )   2024.11  [Reviewed]

    CiNii Research

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:Wiley-VCH GmbH   Joint Work  

    Self-repairing catalysts are useful for achieving alkaline water electrolyzers with long lifetimes under intermittent operation. However, rational methodologies for designing self-repairing catalysts have not yet been established. Herein, hybrid cobalt hydroxide nanosheets (Co-ns), with a high deposition (repairing) rate, and β-FeOOH nanorods (Fe-nr), with high oxygen evolution reaction (OER) ability, are electrostatically self-assembled into composite catalysts. This strategy is developed to integrate multifunctionality in self-repairing catalysts. Positively charged Co-ns and negatively charged Fe-nr form uniform composites when dispersed in an electrolyte. These composites are electrochemically deposited on a nickel electrode by electrolysis at 800 mA cm−2. Co-ns form a conductive mesoporous assembly of CoOOH nanosheets as a support. Fe-nr are then distributed on the CoOOH nanosheets as active sites for the OER. Because of the high deposition rate of Co-ns, the amount of Fe-nr deposited increases 22 times compared to when Fe-nr is deposited alone, and the OER current density increases 14 times compared to that of Co-ns alone. The composite self-repair catalyst shows the highest activity and durability under an accelerated durability test (ADT), and its degradation rate decreases from 84 μV cycle−1 (Fe-nr only) to 60 μV cycle−1 (composite catalyst) under ADT conditions without repair.

display all >>

Review Papers 【 display / non-display

  • Electrolyzer Technologies in Toluene Direct Electro-hydrogenation for Methylcyclohexane Synthesis

    NAGASAWA Kensaku, MITSUSHIMA Shigenori

    Journal of the Japan Petroleum Institute   67 ( 3 )   97 - 104   2024.5

    DOI Web of Science CiNii Research

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:The Japan Petroleum Institute   Joint Work  

    <p>This review presents an overview of the development of an electrolyzer for the direct electrohydrogenation of toluene, a one-step electrochemical process for directly synthesizing methylcyclohexane from toluene and water utilizing solid polymer electrolyte (SPE) membranes. Reducing the cell voltage and enhancing the current efficiency are important to improve the performance of a toluene direct electrohydrogenation electrolyzer. To improve these characteristics, the electrolyzer components consisting of the flow field, the diffusion layer, the anode mesh size, and the collector and cathode catalyst layer were modified and optimized. Investigation of the flow field structure found that the porous carbon flow field exhibited the highest performance, with remarkable improvement in current efficiency. Decrease in current efficiency indicates hydrogen gas generation at the cathode. However, loading of the Pt catalyst in the porous carbon flow field on the cathode side resulted in chemical reaction of the hydrogen gas generated in the catalyst layer with toluene utilizing the Pt catalyst, which significantly improved the overall current efficiency. Smaller mesh size of the anode and heat-pressing treatment of the anode current collector reduced the cell voltage with increased cathode catalyst utilization ratio by improvement of surface pressure uniformity and membrane flatness. The toluene permeation properties of various SPE membranes were determined and the relationship between the catalyst layer thickness and electrolysis performance was clarified. The developed technologies improved the cell voltage at 0.4 A cm<sup>−2</sup> current density from 2.10 to 1.72 V and achieved more than 90 % toluene conversion in continuous single-flow operation.</p><p>This review presents an overview of the development of an electrolyzer for the direct electrohydrogenation of toluene, a one-step electrochemical process for directly synthesizing methylcyclohexane from toluene and water utilizing solid polymer electrolyte (SPE) membranes. Reducing the cell voltage and enhancing the current efficiency are important to improve the performance of a toluene direct electrohydrogenation electrolyzer. To improve these characteristics, the electrolyzer components consisting of the flow field, the diffusion layer, the anode mesh size, and the collector and cathode catalyst layer were modified and optimized. Investigation of the flow field structure found that the porous carbon flow field exhibited the highest performance, with remarkable improvement in current efficiency. Decrease in current efficiency indicates hydrogen gas generation at the cathode. However, loading of the Pt catalyst in the porous carbon flow field on the cathode side resulted in chemical reaction of the hydrogen gas generated in the catalyst layer with toluene utilizing the Pt catalyst, which significantly improved the overall current efficiency. Smaller mesh size of the anode and heat-pressing treatment of the anode current collector reduced the cell voltage with increased cathode catalyst utilization ratio by improvement of surface pressure uniformity and membrane flatness. The toluene permeation properties of various SPE membranes were determined and the relationship between the catalyst layer thickness and electrolysis performance was clarified. The developed technologies improved the cell voltage at 0.4 A cm<sup>−2</sup> current density from 2.10 to 1.72 V and achieved more than 90 % toluene conversion in continuous single-flow operation.</p>

  • Water Electrolysis as Hydrogen Production Technology from Renewable Electricity

    MITSUSHIMA Shigenori

    Nihon Enerugii Gakkai Kikanshi Enermix   101 ( 6 )   713 - 719   2022.11

    DOI CiNii Research

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:The Japan Institute of Energy   Single Work  

  • Electrochemical Methods for Water Electrolysis Electrodes and Electrocatalysts

    MITSUSHIMA Shigenori, IOROI Tsutomu, KURODA Yoshiyuki, NAGASAWA Kensaku, UCHIYAMA Tomoki, ORIKASA Y … Show more authors

    Denki Kagaku   90 ( 2 )   136 - 158   2022.6

    DOI CiNii Research

     More details

    Authorship:Lead author, Corresponding author   Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Publisher:The Electrochemical Society of Japan   Joint Work  

    <p></p><p></p>

  • Water Electrolysis Technology Toward Green Hydrogen Production

    Shigenori Mitsushima, Yoshiyuki Kuroda

    The Journal of Fuel Cell Technology   20 ( 4 )   7 - 13   2021.4

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Article, review, commentary, editorial, etc. (scientific journal)   Single Work  

  • 水電解による水素製造の現状と展望

    光島 重徳、藤田 礁

    電気化学および工業物理化学   85 ( 1 )   28 - 33   2016.12

    DOI

     More details

    Language:Japanese   Publishing type:Article, review, commentary, editorial, etc. (bulletin of university, research institution)   Publisher:電気化学会   Joint Work  

display all >>

Industrial Property Rights 【 display / non-display

  • 3次元規則骨格を有する電極、水電解装置、燃料電池

    加藤 純、光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一

     More details

    Applicant:横浜国立大学、三菱マテリアル

    Application no:2022-140190  Date applied:2022.9.2

    Announcement no:2024-035612  Date announced:2024.3.14

  • 3次元規則骨格を有する電極、水電解装置、燃料電池

    加藤 純、光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一

     More details

    Applicant:横浜国立大学、三菱マテリアル

    Application no:2022-140184  Date applied:2022.9.2

    Announcement no:2024-035606  Date announced:2024.3.14

  • 3次元規則骨格構造を有する金属部材、水電解装置、燃料電池

    光島 重徳、黒田 義之、長澤 兼作、佐野 陽祐、大森 信一、加藤 純

     More details

    Applicant:横浜国立大学、三菱マテリアル

    Application no:2022-139722  Date applied:2022.9.2

    Announcement no:2024-035330  Date announced:2024.3.14

  • カソード、膜電極接合体及び有機ハイドライド製造装置

    光島 重徳、長澤 兼作、黒田 義之

     More details

    Applicant:国立大学法人横浜国立大学

    Application no:2022-032798  Date applied:2022.3.3

    Announcement no:2023-128449  Date announced:2023.9.14

    Country of applicant:Domestic  

  • カソード、膜電極接合体及び有機ハイドライド製造装置

    光島 重徳、長澤 兼作、黒田 義之

     More details

    Applicant:横浜国立大学

    Application no:2022-032798  Date applied:2022.3.3

    Announcement no:2023-128449  Date announced:2023.9.14

display all >>

Awards 【 display / non-display

  • 未来創造発明奨励賞

    2024.7   公益社団法人発明協会   耐久性の高い水素キャリアとしての有機ハイドライド製造装置及び製造方法の発明 (特許第6758628号)

    Individual or group name of awards: 光島重徳(横浜国立大学)、 長澤兼作(産業技術総合研究所)、 錦善則(デノラ・ペルメレック(株))、加藤昭博(デノラ・ペルメレック(株))、尾形節郎(デノラ・ペルメレック(株))、Zaenal Awaludin(デノラ・ペルメレック(株))、眞鍋明義(デノラ・ペルメレック(株))、佐藤 康司(ENEOS(株))、松岡孝司(ENEOS(株))

     More detail

    再エネはコストが低減して普及が進む一方で、発電と消費の時間や場所が一致しないことや需給が一致しないことが課題となっている。これらの課題を解決するために、再エネとトルエンから有機ハイドライド(メチルシクロヘキサン(MCH))を合成する有機ハイドライド電解合成法が開発された。この技術は、MCHを安価に合成することのできる画期的な技術であったが、本発明出願当時は製造効率が短期間で低下するという耐久性の問題があった。  本発明では、まずこの製造効率低下の原因の一つが、イオン交換膜を透過したトルエンやその反応物質であることを特定した。さらに、適切な位置にガスを導入して速やかにトルエンを除去することにより、電解槽の経時的な製造効率の低下を大幅に抑制することに成功した。本発明により、実証スケールへ移行することができ、2023年には豪州でのパイロットプラントの建設、運転や日豪間のグリーン水素サプライチェーン実証にも成功した。

  • Electrochemistry誌の2023年の被引用上位論文「第2位」

    2024.7   Electrochemistry  

    Individual or group name of awards:Ashraf ABDEL HALEEM, 長澤 兼作, 黒田 義之, 錦 善則, Awaludin ZAENAL, 光島 重徳

     More detail

    掲載論文 A New Accelerated Durability Test Protocol for Water Oxidation Electrocatalysts of Renewable Energy Powered Alkaline Water Electrolyzers (jst.go.jp)

  • 電気化学会フェロー

    2023.2   電気化学会  

    Individual or group name of awards:光島重徳

  • 平成31年度電気化学会論文賞

    2019.3   電気化学会   Dependence of the Reverse Current on the Surface of Electrode Placed on a Bipolar Plate in an Alkaline Water Electrolyzer

    Individual or group name of awards:内野 陽介、小林 貴之、長谷 川 伸司、永島 郁男、砂田 良 雄、真鍋 明義、錦 善則、光島 重徳

     More detail

    電気化学会H31年度論文賞 内野 陽介、小林 貴之、長谷 川 伸司、永島 郁男、砂田 良 雄、真鍋 明義、錦 善則、光島 重徳(旭化成(株)、横浜国 大、川崎重工業 (株)、ティッセンク ルップ・ウーデ・クロリ ンエンジニアズ、デノ ラ・ペルメレック)

  • 平成26年度業績賞

    2014.11   電気化学会電解科学技術委員会  

    Individual or group name of awards:光島重徳

display all >>

Other external funds procured 【 display / non-display

  • 常温水電解の実用化基盤研究プラットフォームの構築

    2023.6 - 2025.3

    NEDO燃料電池等利用の飛躍的拡大に向けた共通課題解決型産学官連携研究開発事業

      More details

    Authorship:Principal investigator 

  • トルエン直接電解水素化電解槽の水挙動の解析と電流効率の向上

    2021.6 - 2023.3

    水素利用等先導研究開発事業/エネルギーキャリアシステム調査・研究

  • アルカリ水電解及び固体高分子形水電解の高度化

    2018.7 - 2023.3

    水素利用等先導研究開発事業/水電解水素製造技術高度化のための基盤技術研究開発

  • 有機ハイドライド電解合成用電極触媒の研究開発

    2017.5 - 2018.2

    エネルギー・環境新技術先導プログラム

    Investigator(s):光島重徳

  • <エネルギーキャリア・チーム>有機ハイドライド

    2013.7 - 2014.6

    Japan Science and Technology Agency  戦略的創造研究推進事業 先端的低炭素化技術開発(ALCA) 特別重点技術領域

    Investigator(s):光島重徳

Presentations 【 display / non-display

  • Quantitative Evaluation of the Activity of Nickel Ion Site of LiNi0.5Mn1.5O4 Spinel for Oxygen Evolution Reaction

    H. Zhao, T. Uchiyama, Y. Orikasa, T. Watanabe, K. Yamamoto, T. Matsunaga, Y. Nishiki, S. Mitsushima, and Y. Uchimoto

    242nd ECS meeting  The Electrochemical Society

     More details

    Event date: 2022.10

    Language:English   Presentation type:Oral presentation (general)  

    Venue:Atolanta  

  • アルカリ水電解用多孔質隔膜における水素透過度の温度および電解質濃度依存性

    川端 昴、Hassan Ashraf、光島 重徳、黒田 義之

    電気化学会第91回大会  公益社団法人電気化学会

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋大学 東山キャンパス  

  • トルエン直接電解水素化の電流効率低下の解析

    朝野公太、池上芳、黒田義之、光島重徳

    電気化学会第91回大会  公益社団法人電気化学会

     More details

    Event date: 2024.3

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:名古屋大学 東山キャンパス  

  • アルカリ水電解用の多孔質電極の特性解析

    岡島 光作、黒田 義之、武田 康誠、沼田 昂真、奥野 一樹、光島 重徳

    第43回水素エネルギー協会大会  2023.12  水素エネルギー協会

     More details

    Event date: 2023.12

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:東京   Country:Japan  

  • ハイドロゲル電極を用いたアルカリ水電解用アノードの気体分子排出構造の設計

    和合 拓紀、光島 重徳、黒田 義之

    第47回電解技術討論会      -ソーダ工業技術討論会-  電解科学技術委員会

     More details

    Event date: 2023.11

    Language:Japanese   Presentation type:Oral presentation (general)  

    Venue:大阪公立大学 なんばi-siteキャンパス  

display all >>

 

Charge of on-campus class subject 【 display / non-display

  • 2025   Applied Electrochemistry

    College of Engineering Science

  • 2025   Chemistry, Chemical Engineering and Life Science: Exercise B

    College of Engineering Science

  • 2025   Value Chain System

    College of Engineering Science

  • 2025   Energy Creation Engineering

    College of Engineering Science

  • 2025   Energy System Engineering

    College of Engineering Science

display all >>

 

Committee Memberships 【 display / non-display

  • 水素エネルギー協会

    2022.5 - 2024.5  会長

     More details

    Committee type:Academic society 

  • 電気化学会

    2019.4 - 2021.3  理事・会計理事

     More details

    Committee type:Academic society 

    H31-32年度電気化学会理事・会計理事

  • 水素エネルギー協会

    2018.4 - 2022.3  業務執行副会長

     More details

    Committee type:Academic society 

  • Electrocatalysis

    2018.1  Topical Editor

     More details

    Committee type:Academic society 

  • 埼玉県 水素エネルギー普及推進協議会

    2017.12  会長

     More details

    Committee type:Other 

display all >>

Social Contribution(Extension lecture) 【 display / non-display

  • 光島重徳「市内CO2排出削減が日本全体に役に立つ」 川崎区で「水素戦略」シンポジウム

    Role(s): Guest, Lecturer, Logistic support

    川崎臨海部水素ネットワーク協議会  「水素戦略」シンポジウムを開催後(川崎区 2020年2月19日)東京新聞に掲載(2020年2月20日)  2020.2

     More details

    Audience: University students, Graduate students, Teachers, Researchers, Company, Government agency, Media, Other

    Type:Lecture

  • エネルギー・環境問題と水素・燃料電池技術の現状

    工学研究院  横浜国立大学  2007.6

     More details

    Type:Extension Lecture

    エネルギー・環境問題を克服し、持続成長可能な社会を築くためには地球規模の視点での問題提起とナノレベルの技術開発が欠かせません。本講座では、来るべき水素社会の本質と新エネルギーの開発、燃料電池の現状技術