本橋 永至 (モトハシ エイジ)

MOTOHASHI Eiji

所属組織

大学院国際社会科学研究院 国際社会科学部門

職名

教授

メールアドレス

メールアドレス



ORCID  https://orcid.org/0000-0002-2088-1170

代表的な業績 【 表示 / 非表示

直近の代表的な業績 (過去5年) 【 表示 / 非表示

学歴 【 表示 / 非表示

  •  
    -
    2013年3月

    総合研究大学院大学   複合科学研究科   統計科学専攻   博士課程   修了

  •  
    -
    2009年9月

    カリフォルニア大学アーバイン校   インフォメーション・アンド・コンピュータ・サイエンス研究科   統計学専攻   修士課程(博士前期課程)   修了

  •  
    -
    2005年3月

    立教大学   社会学研究科   応用社会学専攻   修士課程(博士前期課程)   修了

  •  
    -
    2003年3月

    立教大学   社会学部   産業関係学科   卒業

学位 【 表示 / 非表示

  • 博士(学術) - 総合研究大学院大学

学内所属歴 【 表示 / 非表示

  • 2023年4月
    -
    現在

    専任   横浜国立大学   大学院国際社会科学研究院   国際社会科学部門   教授  

  • 2014年4月
    -
    2023年3月

    専任   横浜国立大学   大学院国際社会科学研究院   国際社会科学部門   准教授  

  • 2013年4月
    -
    2014年3月

    専任   横浜国立大学   大学院国際社会科学研究院   国際社会科学部門   講師  

  • 2023年4月
    -
    現在

    併任   横浜国立大学   大学院国際社会科学府   経営学専攻   教授  

  • 2023年4月
    -
    現在

    併任   横浜国立大学   経営学部   経営学科   マネジメント・サイエンス   教授  

全件表示 >>

学外略歴 【 表示 / 非表示

  • 2010年4月
    -
    2013年3月

      日本学術振興会   日本学術振興会特別研究員

所属学協会 【 表示 / 非表示

  • 2008年
    -
    現在
     

    INFORMS

  • 2004年
    -
    現在
     

    日本マーケティング・サイエンス学会

  • 2004年
    -
    現在
     

    日本消費者行動研究学会

  • 2009年
    -
    現在
     

    日本統計学会

  • 2014年4月
    -
    現在
     

    応用統計学会

全件表示 >>

研究分野 【 表示 / 非表示

  • 人文・社会 / 商学

 

著書 【 表示 / 非表示

  • Rで学ぶ統計データ分析

    本橋 永至( 担当: 単著)

    オーム社  2015年9月  ( ISBN:9784274217814

    Amazon

     詳細を見る

    総ページ数:262   記述言語:日本語 著書種別:教科書・概説・概論

論文 【 表示 / 非表示

  • The Effect of Organisational Sales Management on Dealership Performance

    Sekai Kida, Daniel Arturo Heller, Yusuke Tamura, Eiji Motohashi, Hidenori Sato and Yasuhiro Hattori

    International Journal of Automotive Technology and Management   23 ( 2/3 )   144 - 170   2023年9月  [査読有り]

    DOI

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   単著  

  • パートナーシップ・ロイヤルティ・プログラムのトライアル会員の行動分析

    寺本 高, 若鶴 優, 鶴見 裕之, 本橋 永至, 佐藤 伸, 中岸 恵実子

    日本行動計量学会大会抄録集   50 ( 0 )   164 - 165   2022年8月

    DOI CiNii Research

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:日本行動計量学会   共著  

  • スタッキングアルゴリズムを用いた特許拒絶理由類型の判別

    本橋永至, 髙橋省吾, 真鍋誠司, 鈴井智史, 井田英紀, 松井重明

    横浜経営研究   2022年3月

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(大学,研究機関紀要)   共著  

  • パートナーシップ・ロイヤルティ・プログラムから得られるトライアル会員の行動特性

    寺本 高, 若鶴 優, 鶴見 裕之, 本橋 永至, 佐藤 伸, 中岸 恵実子

    行動計量学   49 ( 1 )   15 - 27   2022年3月

    DOI CiNii Research

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:日本行動計量学会   共著  

    <p>The authors clarify the behavioral traits of PLP (Partnership Loyalty Program) members before their trial purchase at the focal company. Specifically, they apply a zero-inflated negative binomial regression model using historical data of PLP members: purchase, marketing reaction, and reward program usage. There are two contributions to their research. First, they clarify the behavioral traits of PLP members at other coalitional companies before the trial purchase at the focal company, which cannot be captured by the loyalty program of a single company. Then, the behavioral traits of PLP members are captured from the three perspectives: purchasing behavior, marketing reaction, and reward acquisition/redemption behavior. These results induce discussions on the effectiveness of PLP from the perspective of sharing and utilizing behavioral information of PLP members among coalitional companies.</p>

  • アンサンブル学習とLDAの統合による動画広告効果の要因分析

    崎濱 栄治, 川崎 泰一, 本橋 永至

    人工知能学会論文誌   36 ( 3 )   1 - 8   2021年5月  [査読有り]

    DOI CiNii Research

     詳細を見る

    記述言語:日本語   掲載種別:研究論文(学術雑誌)   出版者・発行元:人工知能学会   共著  

    <p>With the widespread use of highly functional smartphones and the improvement of communication environments,video advertising is becoming widely used in the mobile advertising domain. When creators create videoadvertisements, if they know in advance the most effective components and combinations, they are more likely to beable to produce them more efficiently. For mobile ad images, [Sakihama 19b] interpreted the results of a click-rateprediction model using Gradient Boosted Decision Trees (GBDT) and Interpretable Trees (inTrees) [Deng 19].</p><p>In this paper, we propose a multimodal approach to analyzing the factors of advertising effectiveness, whichconsists of ad delivery logs, components of video ads, and text information. Specifically, we propose a method forverifying the effectiveness of video advertisements in mobile advertising based on computer vision and a method forsupporting the production of video advertisements using the modeling results of Latent Dirichlet Allocation (LDA),XgBoost [Chen 16], and defragTrees [Hara 18]. This method is expected to be faster and simpler than the oneproposed by [Sakihama 19b], and is likely to enable rule extraction. Computer vision and machine learning will enableautomatic feature extraction, identification of effective components and interactions, and contribution measurement.It is expected to be applied to a wide range of fields other than video advertising.</p>

    その他リンク: https://www.jstage.jst.go.jp/article/tjsai/36/3/36_36-3_B-K91/_pdf/-char/ja

全件表示 >>

受賞 【 表示 / 非表示

  • Best Conference Track Paper Award 2023 Global Marketing Conference at Seoul

    2023年07月   Global Alliance of Marketing and Management Associations   Impact of Retailers’ Goal-directed Motivational Promotions on Customers’ Participation  

    受賞者:Takashi Teramoto, Hiroyuki Tsurumi, Eiji Motohashi, Takashi Watanabe, Shin Sato, Takuma Kobayashi

研究発表 【 表示 / 非表示

  • 家計簿データを利用したマイナポイントの効果測定

    松井暉, 寺本高, 本橋永至, 鶴見裕之

    日本マーケティング・サイエンス学会第114回研究大会  2023年12月  日本マーケティング・サイエンス学会

     詳細を見る

    開催年月日: 2023年12月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:東京   国名:日本国  

  • Impact of Retailers’ Goal-directed Motivational Promotions on Customers’ Participation

    Takashi Teramoto, Hiroyuki Tsurumi, Eiji Motohashi, Takashi Watanabe, Shin Sato, Takuma Kobayashi

    2023 Global Marketing Conference  2023年7月  Global Alliance of Marketing and Management Associations

     詳細を見る

    開催年月日: 2023年7月

    記述言語:英語   会議種別:口頭発表(一般)  

    開催地:ソウル   国名:大韓民国  

  • 目標指向動機付けプロモーションと参加・目標達成の関係

    寺本高, 鶴見裕之, 本橋永至, 渡邊隆史, 佐藤伸, 小林拓磨

    日本マーケティング・サイエンス学会第113回研究大会  2023年6月  日本マーケティング・サイエンス学会

     詳細を見る

    開催年月日: 2023年6月

    記述言語:日本語   会議種別:口頭発表(一般)  

    開催地:大阪   国名:日本国  

 

担当授業科目(学内) 【 表示 / 非表示

  • 2024年度   演習Ⅰa(博士前期)

    大学院国際社会科学府

  • 2024年度   統計データ分析

    教養教育科目

  • 2024年度   基礎ゼミナール

    経営学部

  • 2024年度   本橋ゼミナールⅡ

    経営学部

  • 2024年度   本橋ゼミナールⅠ

    経営学部

全件表示 >>